metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[N-(2-hydroxyethyl)-N-propyldithiocarbamato- $\kappa^2 S, S'$]bis(4-{[(pyridin-4-ylmethylidene)hydrazinylidene]methyl}pyridine- κN^1)cadmium

Grant A. Broker^a and Edward R. T. Tiekink^b*

^a5959 FM 1960 Road West, Houston, Texas 77069, USA, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

Received 28 January 2011; accepted 7 February 2011

Key indicators: single-crystal X-ray study; T = 98 K; mean σ (C–C) = 0.003 Å; R factor = 0.025; wR factor = 0.062; data-to-parameter ratio = 16.9.

The complete molecule of the title compound, $[Cd(C_6H_{12}NOS_2)_2(C_{12}H_{10}N_4)_2]$, is generated by crystallographic inversion symmetry. The distorted octahedral *trans*- N_2S_4 donor set for the Cd^{2+} ion is defined by two symmetrically *S*,*S'*-chelating dithiocarbamate anions and two pyridine N atoms derived from two monodentate 4-pyridinealdazine (or 4-{[(pyridin-4-ylmethylidene)hydrazinylidene}methyl]pyridine) molecules [dihedral angle between the aromatic rings = 17.33 (8)°]. In the crystal, molecules are connected into a supramolecular chain *via* O-H···N hydrogen bonds involving the 4-pyridinealdazine N atoms not involved in coordination to cadmium. Weak C-H···O and C-H···N links consolidate the packing.

Related literature

For background to supramolecular coordination polymers of zinc-triad 1,1-dithiolates, see: Tiekink (2003). For the use of steric effects to control supramolecular aggregation patterns, see: Chen *et al.* (2006). For structural studies on hydroxyl-substituted dithiocarbamate ligands, see Benson *et al.* (2007); Song & Tiekink (2009).

Experimental

Crystal data $\begin{bmatrix} Cd(C_{6}H_{12}NOS_{2})_{2}(C_{12}H_{10}N_{4})_{2} \end{bmatrix}$ $M_{r} = 889.45$ Triclinic, $P\overline{1}$ a = 8.532 (3) Å b = 10.951 (4) Å c = 11.184 (5) Å $\alpha = 79.59$ (3)° $\beta = 88.06$ (3)°

Data collection

Rigaku AFC12/SATURN724 CCD diffractometer Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\rm min} = 0.719, T_{\rm max} = 1$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.062$ S = 1.084150 reflections 245 parameters 1 restraint $\gamma = 78.23 (2)^{\circ}$ $V = 1006.2 (7) \text{ Å}^3$ Z = 1Mo K\alpha radiation $\mu = 0.80 \text{ mm}^{-1}$ T = 98 K $0.25 \times 0.16 \times 0.04 \text{ mm}$

10677 measured reflections 4150 independent reflections 4009 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.023$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.40 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.40 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, $^{\circ}$).

Cd-S1	2.6379 (10)	Cd-N2	2.5403 (17)
Cd-S2	2.6626 (10)		
S1-Cd-S2	68.83 (3)		

Table 2Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{matrix} \hline O1-H1o\cdots N5^{i} \\ C10-H10\cdots O1^{ii} \\ C3-H3a\cdots N4^{iii} \end{matrix}$	0.84 (2)	1.98 (2)	2.810 (2)	176 (2)
	0.95	2.55	3.480 (3)	168
	0.99	2.61	3.369 (3)	134

Symmetry codes: (i) x + 2, y, z - 1; (ii) -x + 1, -y, -z + 1; (iii) x + 1, y, z - 1.

Data collection: *CrystalClear* (Molecular Structure Corporation & Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: PATTY in *DIRDIF* (Beurskens *et al.*, 1992); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPII* (Johnson, 1976) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5795).

References

- Benson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930–940.
- Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The *DIRDIF* Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.

Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Chen, D., Lai, C. S. & Tiekink, E. R. T. (2006). *CrystEngComm*, **8**, 51–58.

- Higashi, T. (1995). *ABSCOR*. Rigaku Corporation, Tokyo, Japan.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Song, J. C. & Tiekink, E. R. T. (2009). Acta Cryst. E65, m1669-m1670.
- Tiekink, E. R. T. (2003). CrystEngComm, 5, 101-113.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2011). E67, m320-m321 [doi:10.1107/S1600536811004508]

$Bis[N-(2-hydroxyethyl)-N-propyldithiocarbamato-\kappa^2 S, S'] bis(4-\{[(pyridin-4-ylmethylidene)hydrazinylidene]methyl\} pyridine-\kappa N^1) cadmium$

G. A. Broker and E. R. T. Tiekink

Comment

Interest in the title compound, (I), relates to controlling supramolecular aggregation patterns in the zinc-triad 1,1-thiolates (Tiekink, 2003; Chen *et al.*, 2006). With functionalized dithiocarbamate ligands carrying hydrogen bonding potential, smaller aggregates can be linked into 2-D and 3-D architectures (Benson *et al.*, 2007; Song & Tiekink, 2009). In (I), the cadmium atom is located on a centre of inversion and is chelated by symmetrically coordinating dithiocarbamate ligands, Table 1 and Fig. 1. The octahedral N_2S_4 donor set is completed by two pyridine-N atoms derived from two monodentate 4-pyridinealdazine ligands.

The monomeric molecules are connected into a supramolecular chain *via* O–H···N hydrogen bonds, Table 2, that lead to the formation of 40-membered [CdSCNC₂OH···NC₄N₂C₄N]₂ synthons, Fig. 2. These chains are linked into layers *via* C–H···O interactions, Table 1, which that stack along [1 0 1]; consolidation of these layers into a 3-D array is afforded by C—H···N_{azo} contacts, Table 2 and Fig. 3.

Experimental

Compound (I) was prepared following the standard literature procedure (Song & Tiekink, 2009) from the reaction of $Cd[S_2CN(CH_2CH_2OH)(nPr)]_2$ and 4-[(1E)-[(E)-2-(pyridin-4-ylmethylidene)hydrazin-1-ylidene]methyl]pyridine (Sigma Aldrich). Yellow plates of (I) were obtained from the slow evaporation of a chloroform/acetonitrile (3/1) solution.

Refinement

C-bound H-atoms were placed in calculated positions (C–H 0.95–0.99 Å) and were included in the refinement in the riding model approximation with $U_{iso}(H)$ set to 1.2–1.5 $U_{eq}(C)$. The O-bound H-atom was located in a difference Fourier map and refined with an O–H restraint of 0.84±0.01 Å, and with $U_{iso}(H) = 1.5U_{eq}(O)$. The reflection ($\overline{8}$ T 2) was removed from the final refinement owing to poor agreement.

Figures

Fig. 1. Molecular structure of (I) showing displacement ellipsoids at the 70% probability level. The Cd atom is located on a centre of inversion and i = 1 - x, 1 - y, 1 - z.

Fig. 2. Supramolecular chain in (I) mediated by O–H…N (orange dashed lines) hydrogen bonds. Colour code: Cd, orange; S, yellow; O, red; N, blue; C, grey; and H, green.

Fig. 3. Unit-cell contents in (I) viewed in projection down the *a* axis.

$Bis[N-(2-hydroxyethyl)-N-propyldithiocarbamato- \kappa^2 S, S'] bis(4-\{[(pyridin-4-ylmethylidene)hydrazinylidene]methyl\}pyridine-\kappa N^1) cadmium$

Crystal data

$[Cd(C_6H_{12}NOS_2)_2(C_{12}H_{10}N_4)_2]$	Z = 1
$M_r = 889.45$	F(000) = 458
Triclinic, PT	$D_{\rm x} = 1.468 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71070$ Å
a = 8.532 (3) Å	Cell parameters from 3485 reflections
b = 10.951 (4) Å	$\theta = 2.4 - 30.3^{\circ}$
c = 11.184 (5) Å	$\mu = 0.80 \text{ mm}^{-1}$
$\alpha = 79.59 \ (3)^{\circ}$	<i>T</i> = 98 K
$\beta = 88.06 \ (3)^{\circ}$	Plate, yellow
$\gamma = 78.23 \ (2)^{\circ}$	$0.25 \times 0.16 \times 0.04 \text{ mm}$
V = 1006.2 (7) Å ³	

Data collection

Rigaku AFC12K/SATURN724 CCD diffractometer	4150 independent reflections
Radiation source: fine-focus sealed tube	4009 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.023$
ω scans	$\theta_{\text{max}} = 26.5^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$
Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995)	$h = -10 \rightarrow 10$
$T_{\min} = 0.719, T_{\max} = 1$	$k = -13 \rightarrow 12$
10677 measured reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.025$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.062$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.08	$w = 1/[\sigma^2(F_o^2) + (0.0288P)^2 + 0.6008P]$ where $P = (F_o^2 + 2F_c^2)/3$
4150 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
245 parameters	$\Delta \rho_{max} = 0.40 \text{ e} \text{ Å}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cd	0.5000	0.5000	0.5000	0.01706 (6)
S1	0.67567 (5)	0.26992 (4)	0.55937 (3)	0.01562 (9)
S2	0.48740 (5)	0.36286 (4)	0.32801 (4)	0.01587 (9)
01	0.88422 (15)	0.05660 (12)	0.17754 (11)	0.0223 (3)
H1o	0.954 (2)	0.094 (2)	0.1432 (19)	0.033*
N1	0.67484 (15)	0.13324 (12)	0.38469 (11)	0.0120 (3)

N2	0.26143 (17)	0.42763 (14)	0.61140 (13)	0.0192 (3)
N3	-0.25800 (17)	0.36129 (14)	0.82625 (13)	0.0194 (3)
N4	-0.37162 (17)	0.28924 (14)	0.87834 (12)	0.0191 (3)
N5	-0.88990 (18)	0.19365 (15)	1.06431 (14)	0.0245 (3)
C1	0.61822 (18)	0.24449 (15)	0.41986 (14)	0.0135 (3)
C2	0.62455 (19)	0.10536 (15)	0.26935 (14)	0.0156 (3)
H2A	0.5139	0.1526	0.2501	0.019*
H2B	0.6239	0.0138	0.2796	0.019*
C3	0.7325 (2)	0.14035 (16)	0.16368 (15)	0.0196 (3)
H3A	0.6824	0.1356	0.0866	0.024*
H3B	0.7465	0.2285	0.1601	0.024*
C4	0.79259 (19)	0.03218 (15)	0.45840 (14)	0.0150 (3)
H4A	0.8604	0.0717	0.5037	0.018*
H4B	0.8630	-0.0158	0.4033	0.018*
C5	0.7154 (2)	-0.05962 (16)	0.54826 (15)	0.0185 (3)
H5A	0.6421	-0.0957	0.5043	0.022*
H5B	0.6517	-0.0137	0.6080	0.022*
C6	0.8430 (2)	-0.16666 (17)	0.61485 (17)	0.0239 (4)
H6A	0.7911	-0.2254	0.6715	0.036*
H6B	0.9137	-0.1311	0.6602	0.036*
H6C	0.9059	-0.2121	0.5557	0.036*
C7	0.1257 (2)	0.50814 (17)	0.63223 (18)	0.0254 (4)
H7	0.1197	0.5963	0.6049	0.031*
C8	-0.0057 (2)	0.46933 (17)	0.69130 (17)	0.0238 (4)
H8	-0.0989	0.5297	0.7041	0.029*
C9	0.0008 (2)	0.34018 (16)	0.73174 (14)	0.0169 (3)
C10	0.1403 (2)	0.25663 (16)	0.70970 (16)	0.0203 (3)
H10	0.1493	0.1679	0.7352	0.024*
C11	0.2661 (2)	0.30418 (16)	0.65018 (16)	0.0205 (3)
H11	0.3608	0.2458	0.6362	0.025*
C12	-0.1326 (2)	0.28869 (16)	0.79403 (14)	0.0177 (3)
H12	-0.1255	0.1995	0.8107	0.021*
C13	-0.5012 (2)	0.35972 (17)	0.90688 (15)	0.0200 (3)
H13	-0.5119	0.4492	0.8929	0.024*
C14	-0.6338 (2)	0.30118 (17)	0.96168 (14)	0.0188 (3)
C15	-0.7640 (2)	0.37321 (18)	1.01209 (17)	0.0248 (4)
H15	-0.7681	0.4604	1.0127	0.030*
C16	-0.8877 (2)	0.31554 (19)	1.06143 (17)	0.0269 (4)
H16	-0.9762	0.3659	1.0952	0.032*
C17	-0.7628 (2)	0.12403 (18)	1.01712 (16)	0.0247 (4)
H17	-0.7612	0.0367	1.0192	0.030*
C18	-0.6341 (2)	0.17338 (18)	0.96559 (16)	0.0228 (4)
H18	-0.5468	0.1206	0.9332	0.027*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd	0.01757 (10)	0.01303 (10)	0.02083 (10)	-0.00255 (7)	0.00354 (7)	-0.00493 (7)

S1	0.0170 (2)	0.01481 (19)	0.01487 (19)	-0.00153 (15)	-0.00065 (15)	-0.00389 (15)
S2	0.0170 (2)	0.01234 (19)	0.0169 (2)	-0.00014 (15)	-0.00203 (15)	-0.00179 (15)
01	0.0183 (6)	0.0224 (6)	0.0251 (6)	-0.0043 (5)	0.0080 (5)	-0.0026 (5)
N1	0.0114 (6)	0.0119 (6)	0.0122 (6)	-0.0014 (5)	-0.0004 (5)	-0.0016 (5)
N2	0.0185 (7)	0.0181 (7)	0.0218 (7)	-0.0050 (6)	0.0034 (6)	-0.0048 (6)
N3	0.0178 (7)	0.0218 (7)	0.0184 (7)	-0.0064 (6)	0.0024 (5)	-0.0007 (6)
N4	0.0188 (7)	0.0228 (7)	0.0161 (7)	-0.0080 (6)	0.0024 (5)	-0.0003 (6)
N5	0.0222 (8)	0.0305 (9)	0.0219 (8)	-0.0094 (7)	0.0047 (6)	-0.0035 (6)
C1	0.0114 (7)	0.0144 (8)	0.0147 (7)	-0.0042 (6)	0.0032 (6)	-0.0014 (6)
C2	0.0165 (8)	0.0145 (8)	0.0158 (8)	-0.0018 (6)	0.0002 (6)	-0.0037 (6)
C3	0.0222 (9)	0.0195 (8)	0.0156 (8)	-0.0012 (7)	0.0027 (6)	-0.0030 (6)
C4	0.0127 (7)	0.0138 (8)	0.0169 (8)	0.0004 (6)	-0.0007 (6)	-0.0020 (6)
C5	0.0167 (8)	0.0168 (8)	0.0210 (8)	-0.0043 (7)	0.0009 (6)	-0.0003 (6)
C6	0.0224 (9)	0.0202 (9)	0.0266 (9)	-0.0051 (7)	-0.0034 (7)	0.0044 (7)
C7	0.0230 (9)	0.0162 (8)	0.0348 (10)	-0.0033 (7)	0.0087 (8)	-0.0008 (7)
C8	0.0174 (9)	0.0198 (9)	0.0320 (10)	-0.0012 (7)	0.0055 (7)	-0.0023 (7)
C9	0.0168 (8)	0.0207 (8)	0.0146 (8)	-0.0062 (7)	0.0003 (6)	-0.0039 (6)
C10	0.0217 (9)	0.0158 (8)	0.0245 (9)	-0.0048 (7)	0.0021 (7)	-0.0055 (7)
C11	0.0193 (8)	0.0175 (8)	0.0259 (9)	-0.0031 (7)	0.0036 (7)	-0.0083 (7)
C12	0.0181 (8)	0.0198 (8)	0.0153 (8)	-0.0055 (7)	-0.0024 (6)	-0.0015 (6)
C13	0.0198 (9)	0.0213 (9)	0.0178 (8)	-0.0049 (7)	0.0006 (6)	0.0003 (7)
C14	0.0171 (8)	0.0241 (9)	0.0146 (8)	-0.0054 (7)	0.0000 (6)	-0.0003 (6)
C15	0.0238 (9)	0.0215 (9)	0.0283 (9)	-0.0043 (7)	0.0040 (7)	-0.0039 (7)
C16	0.0206 (9)	0.0304 (10)	0.0290 (10)	-0.0037 (8)	0.0076 (7)	-0.0062 (8)
C17	0.0255 (9)	0.0246 (9)	0.0260 (9)	-0.0096 (8)	0.0052 (7)	-0.0056 (7)
C18	0.0216 (9)	0.0248 (9)	0.0229 (9)	-0.0054 (7)	0.0045 (7)	-0.0067(7)

Geometric parameters (Å, °)

Cd—S1	2.6379 (10)	C4—H4B	0.9900
Cd—S2	2.6626 (10)	C5—C6	1.527 (2)
Cd—N2	2.5403 (17)	С5—Н5А	0.9900
Cd—S1 ⁱ	2.6379 (10)	С5—Н5В	0.9900
Cd—S2 ⁱ	2.6626 (10)	С6—Н6А	0.9800
Cd—N2 ⁱ	2.5403 (17)	С6—Н6В	0.9800
S1—C1	1.7369 (17)	С6—Н6С	0.9800
S2—C1	1.7286 (18)	С7—С8	1.385 (2)
O1—C3	1.421 (2)	С7—Н7	0.9500
O1—H1o	0.835 (10)	C8—C9	1.395 (2)
N1—C1	1.339 (2)	С8—Н8	0.9500
N1—C2	1.475 (2)	C9—C10	1.390 (2)
N1—C4	1.479 (2)	C9—C12	1.471 (2)
N2—C11	1.336 (2)	C10-C11	1.386 (2)
N2—C7	1.347 (2)	C10—H10	0.9500
N3—C12	1.280 (2)	C11—H11	0.9500
N3—N4	1.418 (2)	C12—H12	0.9500
N4—C13	1.279 (2)	C13—C14	1.475 (2)
N5—C16	1.333 (3)	С13—Н13	0.9500

N5 C17	1 244 (2)	C14 C15	1 201 (2)
$N_{2} = C_{1}^{2}$	1.344(2) 1.516(2)	C14 - C13	1.391(2) 1.303(2)
$C_2 = U_2 A$	1.310(2)	$C_{14} = C_{16}$	1.393(3)
$C_2 = H_2 P$	0.9900	C15_U15	1.388 (3)
C2—H2B	0.9900	C15—III5	0.9300
C3—II3A C2 H3P	0.9900	C_{10} C_{17} C_{18}	1.325(2)
	0.9900	C17—C18	0.9500
C4 H4A	0.0000	C12 H12	0.9300
	0.9900		110.50 (14)
N2'	180	C4—C5—C6	110.58 (14)
$N2^{I}$ —Cd—S1	89.42 (4)	C4—C5—H5A	109.5
N2—Cd—S1	90.58 (4)	С6—С5—Н5А	109.5
$N2^{i}$ —Cd—S1 ⁱ	90.58 (4)	C4—C5—H5B	109.5
N2—Cd—S1 ⁱ	89.42 (4)	C6—C5—H5B	109.5
S1—Cd—S1 ⁱ	180	H5A—C5—H5B	108.1
N2 ⁱ —Cd—S2	87.62 (4)	С5—С6—Н6А	109.5
N2—Cd—S2	92.38 (4)	С5—С6—Н6В	109.5
S1—Cd—S2	68.83 (3)	Н6А—С6—Н6В	109.5
S1 ⁱ —Cd—S2	111.17 (3)	С5—С6—Н6С	109.5
N2 ⁱ —Cd—S2 ⁱ	92.38 (4)	Н6А—С6—Н6С	109.5
N2—Cd—S2 ⁱ	87.62 (4)	Н6В—С6—Н6С	109.5
$S1$ —Cd— $S2^{i}$	111.17 (3)	N2—C7—C8	123.52 (17)
S1 ⁱ —Cd—S2 ⁱ	68.83 (3)	N2—C7—H7	118.2
S2—Cd—S2 ⁱ	180	С8—С7—Н7	118.2
S2—Cd—S2 ⁱ C1—S1—Cd	180 86.05 (6)	С8—С7—Н7 С7—С8—С9	118.2 119.02 (16)
S2—Cd—S2 ⁱ C1—S1—Cd C1—S2—Cd	180 86.05 (6) 85.43 (6)	C8—C7—H7 C7—C8—C9 C7—C8—H8	118.2 119.02 (16) 120.5
S2—Cd—S2 ⁱ C1—S1—Cd C1—S2—Cd C3—O1—H1o	180 86.05 (6) 85.43 (6) 109.5 (16)	C8—C7—H7 C7—C8—C9 C7—C8—H8 C9—C8—H8	118.2 119.02 (16) 120.5 120.5
S2—Cd—S2 ⁱ C1—S1—Cd C1—S2—Cd C3—O1—H1o C1—N1—C2	180 86.05 (6) 85.43 (6) 109.5 (16) 121.74 (13)	C8—C7—H7 C7—C8—C9 C7—C8—H8 C9—C8—H8 C10—C9—C8	118.2 119.02 (16) 120.5 120.5 117.67 (15)
S2—Cd—S2 ⁱ C1—S1—Cd C1—S2—Cd C3—O1—H1o C1—N1—C2 C1—N1—C4	180 86.05 (6) 85.43 (6) 109.5 (16) 121.74 (13) 121.96 (13)	C8—C7—H7 C7—C8—C9 C7—C8—H8 C9—C8—H8 C10—C9—C8 C10—C9—C12	118.2 119.02 (16) 120.5 120.5 117.67 (15) 118.88 (15)
S2—Cd—S2 ⁱ C1—S1—Cd C1—S2—Cd C3—O1—H1o C1—N1—C2 C1—N1—C4 C2—N1—C4	180 86.05 (6) 85.43 (6) 109.5 (16) 121.74 (13) 121.96 (13) 116.29 (13)	C8—C7—H7 C7—C8—C9 C7—C8—H8 C9—C8—H8 C10—C9—C8 C10—C9—C12 C8—C9—C12	118.2 119.02 (16) 120.5 120.5 117.67 (15) 118.88 (15) 123.44 (16)
S2CdS2 ⁱ C1S1Cd C1S2Cd C3O1H10 C1N1C2 C1N1C4 C2N1C4 C11N2C7	180 86.05 (6) 85.43 (6) 109.5 (16) 121.74 (13) 121.96 (13) 116.29 (13) 116.95 (15)	C8—C7—H7 C7—C8—C9 C7—C8—H8 C9—C8—H8 C10—C9—C8 C10—C9—C12 C8—C9—C12 C11—C10—C9	118.2 119.02 (16) 120.5 120.5 117.67 (15) 118.88 (15) 123.44 (16) 119.30 (16)
S2—Cd—S2 ⁱ C1—S1—Cd C1—S2—Cd C3—O1—H1o C1—N1—C2 C1—N1—C4 C2—N1—C4 C11—N2—C7 C11—N2—C7	180 86.05 (6) 85.43 (6) 109.5 (16) 121.74 (13) 121.96 (13) 116.29 (13) 116.95 (15) 119.88 (11)	C8—C7—H7 C7—C8—C9 C7—C8—H8 C9—C8—H8 C10—C9—C8 C10—C9—C12 C8—C9—C12 C11—C10—C9 C11—C10—H10	118.2 119.02 (16) 120.5 120.5 117.67 (15) 118.88 (15) 123.44 (16) 119.30 (16) 120.3
S2—Cd—S2 ⁱ C1—S1—Cd C1—S2—Cd C3—O1—H1o C1—N1—C2 C1—N1—C4 C2—N1—C4 C11—N2—C7 C11—N2—Cd C7—N2—Cd	180 86.05 (6) 85.43 (6) 109.5 (16) 121.74 (13) 121.96 (13) 116.29 (13) 116.95 (15) 119.88 (11) 123.16 (11)	C8—C7—H7 C7—C8—C9 C7—C8—H8 C9—C8—H8 C10—C9—C8 C10—C9—C12 C8—C9—C12 C11—C10—C9 C11—C10—H10 C9—C10—H10	118.2 119.02 (16) 120.5 120.5 117.67 (15) 118.88 (15) 123.44 (16) 119.30 (16) 120.3 120.3
S2—Cd—S2 ⁱ C1—S1—Cd C1—S2—Cd C3—O1—H1o C1—N1—C2 C1—N1—C4 C2—N1—C4 C11—N2—C7 C11—N2—C7 C11—N2—Cd C7—N2—Cd C12—N3—N4	180 86.05 (6) 85.43 (6) 109.5 (16) 121.74 (13) 121.96 (13) 116.29 (13) 116.95 (15) 119.88 (11) 123.16 (11) 110.47 (14)	C8—C7—H7 C7—C8—C9 C7—C8—H8 C9—C8—H8 C10—C9—C8 C10—C9—C12 C8—C9—C12 C11—C10—C9 C11—C10—H10 C9—C10—H10 N2—C11—C10	118.2 119.02 (16) 120.5 120.5 117.67 (15) 118.88 (15) 123.44 (16) 119.30 (16) 120.3 120.3 120.3
S2—Cd—S2 ⁱ C1—S1—Cd C3—O1—H1o C1—N1—C2 C1—N1—C4 C2—N1—C4 C11—N2—C7 C11—N2—Cd C7—N2—Cd C12—N3—N4 C13—N4—N3	180 86.05 (6) 85.43 (6) 109.5 (16) 121.74 (13) 121.96 (13) 116.29 (13) 116.95 (15) 119.88 (11) 123.16 (11) 110.47 (14) 111.93 (14)	C8—C7—H7 C7—C8—C9 C7—C8—H8 C9—C8—H8 C10—C9—C8 C10—C9—C12 C8—C9—C12 C11—C10—C9 C11—C10—H10 C9—C10—H10 N2—C11—C10 N2—C11—H11	118.2 119.02 (16) 120.5 120.5 117.67 (15) 118.88 (15) 123.44 (16) 119.30 (16) 120.3 120.3 120.3 123.54 (16) 118.2
S2—Cd—S2 ⁱ C1—S1—Cd C1—S2—Cd C3—O1—H1o C1—N1—C2 C1—N1—C4 C2—N1—C4 C11—N2—C7 C11—N2—Cd C7—N2—Cd C12—N3—N4 C13—N4—N3 C16—N5—C17	180 86.05 (6) 85.43 (6) 109.5 (16) 121.74 (13) 121.96 (13) 116.29 (13) 116.95 (15) 119.88 (11) 123.16 (11) 110.47 (14) 111.93 (14) 116.98 (16)	C8—C7—H7 C7—C8—C9 C7—C8—H8 C9—C8—H8 C10—C9—C12 C8—C9—C12 C11—C10—C9 C11—C10—H10 C9—C10—H10 N2—C11—H11 C10—C11—H11	118.2 119.02 (16) 120.5 120.5 117.67 (15) 118.88 (15) 123.44 (16) 119.30 (16) 120.3 120.3 120.3 123.54 (16) 118.2 118.2
S2—Cd—S2 ⁱ C1—S1—Cd C1—S2—Cd C3—O1—H1o C1—N1—C2 C1—N1—C4 C2—N1—C4 C11—N2—C7 C11—N2—Cd C7—N2—Cd C12—N3—N4 C13—N4—N3 C16—N5—C17 N1—C1—S2	180 86.05 (6) 85.43 (6) 109.5 (16) 121.74 (13) 121.96 (13) 116.29 (13) 116.95 (15) 119.88 (11) 123.16 (11) 110.47 (14) 111.93 (14) 116.98 (16) 120.59 (12)	C8—C7—H7 C7—C8—C9 C7—C8—H8 C9—C8—H8 C10—C9—C8 C10—C9—C12 C8—C9—C12 C11—C10—C9 C11—C10—H10 C9—C10—H10 N2—C11—H11 C10—C11—H11 N3—C12—C9	118.2 119.02 (16) 120.5 120.5 117.67 (15) 118.88 (15) 123.44 (16) 119.30 (16) 120.3 120.3 120.3 123.54 (16) 118.2 118.2 121.48 (16)
S2—Cd—S2 ⁱ C1—S1—Cd C1—S2—Cd C3—O1—H1o C1—N1—C2 C1—N1—C4 C2—N1—C4 C11—N2—C7 C11—N2—C7 C11—N2—Cd C7—N2—Cd C12—N3—N4 C13—N4—N3 C16—N5—C17 N1—C1—S2 N1—C1—S1	180 86.05 (6) 85.43 (6) 109.5 (16) 121.74 (13) 121.96 (13) 116.29 (13) 116.95 (15) 119.88 (11) 123.16 (11) 110.47 (14) 111.93 (14) 116.98 (16) 120.59 (12) 119.77 (12)	C8—C7—H7 C7—C8—C9 C7—C8—H8 C9—C8—H8 C10—C9—C8 C10—C9—C12 C8—C9—C12 C11—C10—C9 C11—C10—H10 C9—C10—H10 N2—C11—H11 C10—C11—H11 N3—C12—C9 N3—C12—H12	118.2 119.02 (16) 120.5 120.5 117.67 (15) 118.88 (15) 123.44 (16) 119.30 (16) 120.3 120.3 120.3 123.54 (16) 118.2 118.2 121.48 (16) 119.3
S2CdS2 ⁱ C1S1Cd C3O1H10 C1N1C2 C1N1C4 C2N1C4 C2N1C4 C11N2C7 C11N2Cd C7N2Cd C12N3N4 C13N4N3 C16N5C17 N1C1S2 N1C1S1 S2C1S1	180 86.05 (6) 85.43 (6) 109.5 (16) 121.74 (13) 121.96 (13) 116.29 (13) 116.95 (15) 119.88 (11) 123.16 (11) 110.47 (14) 111.93 (14) 116.98 (16) 120.59 (12) 119.77 (12) 119.64 (10)	C8—C7—H7 C7—C8—C9 C7—C8—H8 C9—C8—H8 C10—C9—C12 C8—C9—C12 C11—C10—C9 C11—C10—H10 C9—C10—H10 N2—C11—H11 C10—C11—H11 N3—C12—C9 N3—C12—H12 C9—C12—H12	118.2 119.02 (16) 120.5 120.5 117.67 (15) 118.88 (15) 123.44 (16) 119.30 (16) 120.3 120.3 120.3 123.54 (16) 118.2 118.2 121.48 (16) 119.3 119.3
$S2-Cd-S2^i$ C1-S1-Cd C1-S2-Cd C3-O1-H10 C1-N1-C2 C1-N1-C4 C2-N1-C4 C1-N2-C7 C11-N2-Cd C7-N2-Cd C12-N3-N4 C13-N4-N3 C16-N5-C17 N1-C1-S2 N1-C1-S1 S2-C1-S1 N1-C2-C3	180 86.05 (6) 85.43 (6) 109.5 (16) 121.74 (13) 121.96 (13) 116.29 (13) 116.95 (15) 119.88 (11) 123.16 (11) 110.47 (14) 111.93 (14) 116.98 (16) 120.59 (12) 119.77 (12) 119.64 (10) 113.01 (13)	C8—C7—H7 C7—C8—C9 C7—C8—H8 C9—C8—H8 C10—C9—C12 C8—C9—C12 C11—C10—C9 C11—C10—H10 C9—C10—H10 N2—C11—H11 N2—C11—H11 N3—C12—C9 N3—C12—H12 C9—C12—H12 N4—C13—C14	118.2 119.02 (16) 120.5 120.5 117.67 (15) 118.88 (15) 123.44 (16) 119.30 (16) 120.3 120.3 120.3 123.54 (16) 118.2 118.2 121.48 (16) 119.3 119.3 119.59 (16)
$S2-Cd-S2^i$ C1-S1-Cd C1-S2-Cd C3-O1-H10 C1-N1-C2 C1-N1-C4 C2-N1-C4 C1-N2-C7 C11-N2-Cd C7-N2-Cd C12-N3-N4 C13-N4-N3 C16-N5-C17 N1-C1-S2 N1-C1-S1 S2-C1-S1 N1-C2-C3 N1-C2-H2A	180 $86.05 (6)$ $85.43 (6)$ $109.5 (16)$ $121.74 (13)$ $121.96 (13)$ $116.29 (13)$ $116.95 (15)$ $119.88 (11)$ $123.16 (11)$ $110.47 (14)$ $111.93 (14)$ $116.98 (16)$ $120.59 (12)$ $119.77 (12)$ $119.64 (10)$ $113.01 (13)$ 109.0	C8—C7—H7 C7—C8—C9 C7—C8—H8 C9—C8—H8 C10—C9—C8 C10—C9—C12 C8—C9—C12 C11—C10—C9 C11—C10—H10 C9—C10—H10 N2—C11—H11 N2—C11—H11 N3—C12—C9 N3—C12—H12 C9—C12—H12 N4—C13—C14 N4—C13—H13	118.2 119.02 (16) 120.5 120.5 117.67 (15) 118.88 (15) 123.44 (16) 119.30 (16) 120.3 120.3 120.3 123.54 (16) 118.2 118.2 121.48 (16) 119.3 119.3 119.59 (16) 120.2
$S2CdS2^i$ C1S1Cd C3O1H1o C1N1C2 C1N1C4 C2N1C4 C2N1C4 C11N2Cd C7N2Cd C12N3N4 C13N4N3 C16N5C17 N1C1S1 S2C1S1 S2C1S1 N1C2H2A C3C2H2A	180 $86.05 (6)$ $85.43 (6)$ $109.5 (16)$ $121.74 (13)$ $121.96 (13)$ $116.29 (13)$ $116.95 (15)$ $119.88 (11)$ $123.16 (11)$ $110.47 (14)$ $111.93 (14)$ $116.98 (16)$ $120.59 (12)$ $119.77 (12)$ $119.64 (10)$ $113.01 (13)$ 109.0	C8—C7—H7 C7—C8—C9 C7—C8—H8 C9—C8—H8 C10—C9—C12 C8—C9—C12 C11—C10—C9 C11—C10—H10 C9—C10—H10 N2—C11—H11 C10—C11—H11 N3—C12—C9 N3—C12—H12 C9—C12—H12 N4—C13—H13 C14—C13—H13	118.2 119.02 (16) 120.5 120.5 117.67 (15) 118.88 (15) 123.44 (16) 119.30 (16) 120.3 120.3 120.3 123.54 (16) 118.2 118.2 121.48 (16) 119.3 119.3 119.3 119.59 (16) 120.2 120.2
$S2-Cd-S2^i$ C1-S1-Cd C3-O1-H10 C1-N1-C2 C1-N1-C4 C2-N1-C4 C2-N1-C4 C1-N2-C7 C11-N2-Cd C7-N2-Cd C12-N3-N4 C13-N4-N3 C16-N5-C17 N1-C1-S2 N1-C1-S1 S2-C1-S1 N1-C2-C3 N1-C2-H2A C3-C2-H2A N1-C2-H2B	180 $86.05 (6)$ $85.43 (6)$ $109.5 (16)$ $121.74 (13)$ $121.96 (13)$ $116.29 (13)$ $116.95 (15)$ $119.88 (11)$ $123.16 (11)$ $110.47 (14)$ $111.93 (14)$ $116.98 (16)$ $120.59 (12)$ $119.77 (12)$ $119.64 (10)$ $113.01 (13)$ 109.0 109.0	C8-C7-H7 C7-C8-C9 C7-C8-H8 C9-C8-H8 C10-C9-C8 C10-C9-C12 C8-C9-C12 C11-C10-C9 C11-C10-H10 C9-C10-H10 N2-C11-H11 N2-C11-H11 N3-C12-C9 N3-C12-H12 C9-C12-H12 N4-C13-C14 N4-C13-H13 C14-C13-H13 C15-C14-C18	118.2 119.02 (16) 120.5 120.5 117.67 (15) 118.88 (15) 123.44 (16) 119.30 (16) 120.3 120.3 123.54 (16) 118.2 118.2 121.48 (16) 119.3 119.3 119.59 (16) 120.2 120.2 117.63 (16)
$S2-Cd-S2^i$ C1-S1-Cd C1-S2-Cd C3-O1-H10 C1-N1-C2 C1-N1-C4 C2-N1-C4 C1-N2-C7 C11-N2-Cd C7-N2-Cd C12-N3-N4 C13-N4-N3 C16-N5-C17 N1-C1-S2 N1-C1-S1 S2-C1-S1 N1-C2-C3 N1-C2-H2A C3-C2-H2A C3-C2-H2B C3-C2-H2B	180 $86.05 (6)$ $85.43 (6)$ $109.5 (16)$ $121.74 (13)$ $121.96 (13)$ $116.29 (13)$ $116.95 (15)$ $119.88 (11)$ $123.16 (11)$ $110.47 (14)$ $111.93 (14)$ $116.98 (16)$ $120.59 (12)$ $119.77 (12)$ $119.64 (10)$ $113.01 (13)$ 109.0 109.0 109.0	C8-C7-H7 C7-C8-C9 C7-C8-H8 C9-C8-H8 C10-C9-C12 C8-C9-C12 C11-C10-C9 C11-C10-H10 C9-C10-H10 N2-C11-H11 N2-C11-H11 N3-C12-C9 N3-C12-H12 C9-C12-H12 N4-C13-H13 C14-C13-H13 C15-C14-C13	118.2 119.02 (16) 120.5 120.5 117.67 (15) 118.88 (15) 123.44 (16) 119.30 (16) 120.3 120.3 120.3 123.54 (16) 118.2 118.2 121.48 (16) 119.3 119.3 119.3 119.59 (16) 120.2 120.2 117.63 (16) 120.38 (16)
$S2-Cd-S2^i$ C1-S1-Cd C1-S2-Cd C3-O1-H10 C1-N1-C2 C1-N1-C4 C2-N1-C4 C1-N2-C4 C1-N2-C4 C11-N2-C4 C12-N3-N4 C13-N4-N3 C16-N5-C17 N1-C1-S1 S2-C1-S1 N1-C2-C3 N1-C2-H2A C3-C2-H2A N1-C2-H2B C3-C2-H2B H2A-C2-H2B	180 86.05 (6) 85.43 (6) 109.5 (16) 121.74 (13) 121.96 (13) 116.29 (13) 116.95 (15) 119.88 (11) 123.16 (11) 110.47 (14) 111.93 (14) 116.98 (16) 120.59 (12) 119.77 (12) 119.64 (10) 113.01 (13) 109.0 109.0 109.0 109.0 107.8	C8-C7-H7 C7-C8-C9 C7-C8-H8 C9-C8-H8 C10-C9-C12 C8-C9-C12 C11-C10-C9 C11-C10-H10 C9-C10-H10 N2-C11-H11 N2-C11-H11 N3-C12-C9 N3-C12-C9 N3-C12-H12 C9-C12-H12 N4-C13-H13 C14-C13-H13 C15-C14-C13 C18-C14-C13	118.2 119.02 (16) 120.5 120.5 117.67 (15) 118.88 (15) 123.44 (16) 119.30 (16) 120.3 120.3 120.3 123.54 (16) 118.2 121.48 (16) 119.3 119.3 119.59 (16) 120.2 120.2 117.63 (16) 120.38 (16) 121.99 (16)
$S2CdS2^i$ C1S1Cd C3O1H1o C1N1C2 C1N1C4 C2N1C4 C2N1C4 C1N2C7 C11N2Cd C7N2Cd C12N3N4 C13N4N3 C16N5C17 N1C1S1 S2C1S1 N1C2S1 N1C2H2A C3C2H2B C3C2H2B H2AC2H2B O1C3C2	180 $86.05 (6)$ $85.43 (6)$ $109.5 (16)$ $121.74 (13)$ $121.96 (13)$ $116.29 (13)$ $116.95 (15)$ $119.88 (11)$ $123.16 (11)$ $110.47 (14)$ $111.93 (14)$ $116.98 (16)$ $120.59 (12)$ $119.77 (12)$ $119.64 (10)$ $113.01 (13)$ 109.0 109.0 109.0 109.0 109.0 107.8 $110.27 (14)$	C8-C7-H7 C7-C8-C9 C7-C8-H8 C9-C8-H8 C10-C9-C12 C8-C9-C12 C11-C10-C9 C11-C10-H10 C9-C10-H10 N2-C11-H11 N2-C11-H11 N3-C12-C9 N3-C12-H12 C9-C12-H12 N4-C13-H13 C14-C13-H13 C15-C14-C13 C18-C14-C13 C16-C15-C14	118.2 $119.02 (16)$ 120.5 120.5 $117.67 (15)$ $118.88 (15)$ $123.44 (16)$ $119.30 (16)$ 120.3 120.3 $123.54 (16)$ 118.2 118.2 $121.48 (16)$ 119.3 119.3 119.3 $119.59 (16)$ 120.2 120.2 $117.63 (16)$ $120.38 (16)$ $121.99 (16)$ $118.89 (17)$

С2—С3—НЗА	109.6	C14—C15—H15	120.6
O1—C3—H3B	109.6	N5-C16-C15	123.90 (17)
С2—С3—Н3В	109.6	N5—C16—H16	118.0
НЗА—СЗ—НЗВ	108.1	C15-C16-H16	118.0
N1—C4—C5	113.22 (13)	N5-C17-C18	123.21 (17)
N1—C4—H4A	108.9	N5—C17—H17	118.4
C5—C4—H4A	108.9	C18—C17—H17	118.4
N1—C4—H4B	108.9	C17—C18—C14	119.38 (17)
C5—C4—H4B	108.9	C17—C18—H18	120.3
H4A—C4—H4B	107.7	C14—C18—H18	120.3
$N2^{i}$ —Cd—S1—C1	-86.27 (7)	C4—N1—C2—C3	-87.99 (17)
N2—Cd—S1—C1	93.73 (7)	N1—C2—C3—O1	70.19 (17)
S1 ⁱ —Cd—S1—C1	95 (100)	C1—N1—C4—C5	90.95 (18)
S2—Cd—S1—C1	1.40 (5)	C2—N1—C4—C5	-89.78 (16)
S2 ⁱ —Cd—S1—C1	-178.60 (5)	N1—C4—C5—C6	175.96 (13)
N2 ⁱ —Cd—S2—C1	88.89 (7)	C11—N2—C7—C8	0.3 (3)
N2—Cd—S2—C1	-91.11 (7)	Cd—N2—C7—C8	179.02 (14)
S1—Cd—S2—C1	-1.41 (5)	N2—C7—C8—C9	-0.1 (3)
S1 ⁱ —Cd—S2—C1	178.59 (5)	C7—C8—C9—C10	-0.3 (3)
S2 ⁱ —Cd—S2—C1	-29 (100)	C7—C8—C9—C12	-179.20 (17)
N2 ⁱ —Cd—N2—C11	-146 (100)	C8—C9—C10—C11	0.5 (2)
S1—Cd—N2—C11	-10.78 (13)	C12-C9-C10-C11	179.47 (15)
S1 ⁱ —Cd—N2—C11	169.22 (13)	C7—N2—C11—C10	-0.1 (3)
S2—Cd—N2—C11	58.06 (13)	Cd—N2—C11—C10	-178.83 (13)
S2 ⁱ —Cd—N2—C11	-121.94 (13)	C9—C10—C11—N2	-0.3 (3)
N2 ⁱ —Cd—N2—C7	35 (100)	N4—N3—C12—C9	176.90 (14)
S1—Cd—N2—C7	170.58 (14)	C10-C9-C12-N3	173.70 (15)
S1 ⁱ —Cd—N2—C7	-9.42 (14)	C8—C9—C12—N3	-7.4 (3)
S2—Cd—N2—C7	-120.58 (14)	N3—N4—C13—C14	179.61 (14)
$S2^{i}$ —Cd—N2—C7	59.42 (14)	N4—C13—C14—C15	169.03 (16)
C12—N3—N4—C13	-177.28 (14)	N4—C13—C14—C18	-10.7 (3)
C2—N1—C1—S2	-2.1 (2)	C18-C14-C15-C16	-1.1 (3)
C4—N1—C1—S2	177.14 (10)	C13-C14-C15-C16	179.14 (16)
C2-N1-C1-S1	177.52 (10)	C17—N5—C16—C15	0.6 (3)
C4—N1—C1—S1	-3.2 (2)	C14-C15-C16-N5	0.4 (3)
Cd—S2—C1—N1	-178.09 (12)	C16—N5—C17—C18	-0.8 (3)
Cd—S2—C1—S1	2.29 (8)	N5-C17-C18-C14	0.1 (3)
Cd—S1—C1—N1	178.07 (12)	C15-C14-C18-C17	0.9 (3)
Cd—S1—C1—S2	-2.31 (8)	C13—C14—C18—C17	-179.34 (16)
C1—N1—C2—C3	91.28 (18)		
Symmetry codes: (i) $-x+1, -y+1, -z+1$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	$D -\!\!\!-\!\!\!\!-\!\!\!\!\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
O1—H1o···N5 ⁱⁱ	0.84 (2)	1.98 (2)	2.810 (2)	176 (2)

C10—H10…O1 ⁱⁱⁱ	0.95	2.55	3.480 (3)	168
C3—H3a····N4 ^{iv}	0.99	2.61	3.369 (3)	134
0	(1, C,) = 1	1		

Symmetry codes: (ii) *x*+2, *y*, *z*-1; (iii) -*x*+1, -*y*, -*z*+1; (iv) *x*+1, *y*, *z*-1.

Fig. 1

